Joint Dictionaries for Zero-Shot Learning
نویسندگان
چکیده
A classic approach toward zero-shot learning (ZSL) is to map the input domain to a set of semantically meaningful attributes that could be used later on to classify unseen classes of data (e.g. visual data). In this paper, we propose to learn a visual feature dictionary that has semantically meaningful atoms. Such dictionary is learned via joint dictionary learning for the visual domain and the attribute domain, while enforcing the same sparse coding for both dictionaries. Our novel attribute aware formulation provides an algorithmic solution to the domain shift/hubness problem in ZSL. Upon learning the joint dictionaries, images from unseen classes can be mapped into the attribute space by finding the attribute aware joint sparse representation using solely the visual data. We demonstrate that our approach provides superior or comparable performance to that of the state of the art on benchmark datasets.
منابع مشابه
Joint Semantic and Latent Attribute Modelling for Cross-Class Transfer Learning.
A number of vision problems such as zero-shot learning and person re-identification can be considered as cross-class transfer learning problems. As mid-level semantic properties shared cross different object classes, attributes have been studied extensively for knowledge-transfer across classes. Most previous attribute learning methods focus only on human-defined/nameable semantic attributes, w...
متن کاملMulti-Label Zero-Shot Human Action Recognition via Joint Latent Embedding
Human action recognition refers to automatic recognizing human actions from a video clip, which is one of the most challenging tasks in computer vision. Due to the fact that annotating video data is laborious and timeconsuming, most of the existing works in human action recognition are limited to a number of small scale benchmark datasets where there are a small number of video clips associated...
متن کاملZero-Shot Learning with Structured Embeddings
Despite significant recent advances in image classification, fine-grained classification remains a challenge. In the present paper, we address the zero-shot and few-shot learning scenarios as obtaining labeled data is especially difficult for fine-grained classification tasks. First, we embed state-of-the-art image descriptors in a label embedding space using side information such as attributes...
متن کاملA Unified approach for Conventional Zero-shot, Generalized Zero-shot and Few-shot Learning
Prevalent techniques in zero-shot learning do not generalize well to other related problem scenarios. Here, we present a unified approach for conventional zero-shot, generalized zero-shot and few-shot learning problems. Our approach is based on a novel Class Adapting Principal Directions (CAPD) concept that allows multiple embeddings of image features into a semantic space. Given an image, our ...
متن کاملZero-Shot Learning by Generating Pseudo Feature Representations
Zero-shot learning (ZSL) is a challenging task aiming at recognizing novel classes without any training instances. In this paper we present a simple but high-performance ZSL approach by generating pseudo feature representations (GPFR). Given the dataset of seen classes and side information of unseen classes (e.g. attributes), we synthesize feature-level pseudo representations for novel concepts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.03688 شماره
صفحات -
تاریخ انتشار 2017